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SUMMARY

This paper introduces a continuum, i.e. non-discrete, upstream-bias formulation that rests on the physics
and mathematics of acoustics and convection. The formulation induces the upstream-bias at the
differential equation level, within a characteristics-bias system associated with the Euler equations with
general equilibrium equations of state. For low subsonic Mach numbers, this formulation returns a
consistent upstream-bias approximation for the non-linear acoustics equations. For supersonic Mach
numbers, the formulation smoothly becomes an upstream-bias approximation of the entire Euler flux.
With the objective of minimizing induced artificial diffusion, the formulation non-linearly induces
upstream-bias, essentially locally, in regions of solution discontinuities, whereas it decreases the up-
stream-bias in regions of solution smoothness. The discrete equations originate from a finite element
discretization of the characteristic-bias system and are integrated in time within a compact block
tridiagonal matrix statement by way of an implicit non-linearly stable Runge–Kutta algorithm for stiff
systems. As documented by several computational results that reflect available exact solutions, the
acoustics–convection solver induces low artificial diffusion and generates essentially non-oscillatory
solutions that automatically preserve a constant enthalpy, as well as smoothness of both enthalpy and
mass flux across normal shocks. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper introduces for the Euler equations, with general equilibrium equations of state, a
stable and consistent upstream-bias algorithm that rests on a new flux Jacobian decomposition
(FJD) formulation, features the simplicity of a flux vector splitting formulation and accommo-
dates an implicit solver. The algorithm induces minimal diffusion, naturally incorporates a
finite element discretization and uniquely generates the upstream-bias directly at the differen-
tial equation level before and independently of any discrete approximation on specified grids.
As one of its important features, the algorithm combines the mathematics of upwind
algorithms with the physics of acoustics and convection, the wave propagation mechanisms
within gas dynamic flows.
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Most finite element, difference and volume algorithms have remained largely independent
from the physics of acoustics and convection. The dissipation mechanisms within these
algorithms, furthermore, have been developed at the discrete level in connection with a specific
grid.

Several finite element Euler solvers have either utilized modifications of the test space, e.g.
SUPG [1], or introduced Taylor’s series-based dissipation terms, e.g. TWS [2], to generate
stable algorithms. The mathematical developments in these fundamental contributions have
remained independent from characteristics theory.

Most characteristic upwind schemes have been implemented through finite difference and
finite volume discrete approximations [3]. Roe’s approximate Riemann solver [4] remains an
upwind procedure with a significant physics content. The associated operation count, on the
other hand, exceeds that of a flux vector splitting formulation.

VanLeer’s original simple flux vector splitting, and the many variants developed thereafter
[5], essentially rely on Mach number dependent polynomials to generate flux components, each
featuring Jacobian eigenvalues with uniform algebraic signs. As such, these fundamental
mathematical developments remain independent from the physics of acoustics and convection.

As a spin-off from these studies and presented as a new perfect-gas flux vector splitting,
Liou and Steffen’s procedure [6] employs an ad hoc advection velocity along with flux
components with convection and pressure physical meanings. An analogous method was
introduced earlier by this author [7] and the essentially non-oscillatory results from both
methods bear out the advantages of employing flux components with clear physical
significance.

The eigenvalues of the various convection and pressure fluxes in these methods, however,
either approach zero or remain substantially less than the speed of sound for decreasing Mach
number. Neither method has, therefore, generated a physically consistent upstream-bias
approximation of the acoustics limit of the Euler equations in the low-Mach number regime.
In fact no single decomposition of the Euler flux contains separate components that respec-
tively correspond to the physics of acoustics and convection.

In this paper, a new upstream-bias formulation is developed that is based on a decomposi-
tion of the Euler flux vector Jacobian into matrix components. This formulation encompasses,
unifies and generalizes upwind algorithms, including flux vector splitting and flux difference
splitting developments. This formulation develops the upstream-bias approximation directly at
the differential equation level, before any discretization. The method results in a ‘companion’
characteristics-bias system that is associated with the Euler equations and contains an
upstream-bias differential expression. The characteristics-bias system features a characteristics
flux that generalizes, in the continuum, the traditional numerical fluxes of upwind schemes.
The acoustic–convection upstream algorithm then results from a specific decomposition of the
flux vector Jacobian into genuine acoustics and convection components, for a physically
consistent upstream approximation of coupled acoustic and convection wave propagation.

A traditional centered discretization of the acoustics–convection characteristics-bias system
then automatically generates a coherent upstream discrete approximation of the governing
Euler equations. This approximation, moreover, reduces to a consistent upstream approxima-
tion of the acoustics equations, for vanishing Mach number, which addresses the challenging
problem of calculating low-Mach number flows. Finite difference, volume or element proce-
dures can be used to discretize the characteristics-bias system. The algorithm in this paper has
used a finite element discretization, which also leads naturally and automatically to consistent
boundary differential equations and a new outlet pressure boundary condition that does not
require any algebraic extrapolation of variables. The resulting discrete equations correspond to
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an essentially centered discretization in the form of a non-linear combination of upstream
diffusive and downstream antidiffusive flux differences, with greater bias on the upstream
diffusive flux difference. This formulation, furthermore, directly accommodates an implicit
solver, for it is very easy to determine the required Jacobian matrices.

With the objective of minimizing induced artificial diffusion, the characteristics-bias flux
non-linearly induces upstream-bias essentially locally in regions of solution discontinuities,
whereas it decreases the upstream-bias in regions of solution smoothness. This variable
diffusion is automatically adjusted at each discretization node by a new controller, also
introduced in this paper. This controller depends on local solution slope jumps and varies the
combination weights on the upstream and downstream fluxes, within the discrete equations.

The operation count for this algorithm is comparable with that of a simple flux vector
splitting algorithm. The developments in this study have employed basic two-noded cells,
which has thus led to a block tridiagonal matrix system, for the implicit formulation. To
determine the ultimate accuracy of linear approximations of fluxes within two-noded cells, for
a computationally efficient implementation, this study employs no MUSCL-type local extrap-
olation of dependent variables.

This paper is organized into nine sections. After the introductory remarks in Section 1,
Section 2 presents the governing equations and Sections 3 develops the flux Jacobian
decomposition formulation. Section 4 presents the decomposition of the Euler flux Jacobian
into genuinely physical acoustic and convection components, followed in Section 5 by the
determination of the corresponding upstream-bias stability eigenvalues. Section 6 details the
finite element spatial discretization, along with the new pressure boundary condition and
solution dependent control of upstream diffusion, and Section 7 delineates the non-linearly
stable implicit Runge–Kutta time integration. The computational results are discussed in
Section 8, with concluding remarks presented in Section 9.

2. GOVERNING EQUATIONS

2.1. Euler system

With respect to an inertial reference frame, the quasi-one-dimensional Euler conservation
law system [3] is:

(q
(t

+
(f(q)
(x

=f, (1)

where the independent variable (x, t) varies in the domain DV× [t0, T ], V [a, b ]. This
system consists of the continuity, momentum and total energy equations, and the arrays
q=q(x, t), f= f(q) and f=f(x, q) are defined as
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where r, m and E respectively denote static density and volume-specific linear momentum and
total energy; the Eulerian flow velocity u is then defined as um/r. The terms p, A=A(x)
and A� respectively indicate static pressure, area of the flow duct cross-section and constant
upstream-flow reference throat area.

2.2. Equilibrium equation of state, pressure deri6ati6es, speed of sound

For any homogeneous equilibrium gas, pressure depends upon two other thermodynamic
variables [8]. They are density r and mass specific internal energy e, in this case, since they are
readily available from the Euler system (1): r directly from the continuity equation in the
system, and e from q as

e
E
r

=
1

2r2 m2. (3)

The pressure equation of state thus becomes

p=p(r, e)=p
�

r,
E
r

−
1

2r2 m2�. (4)

The Jacobian derivatives of p with respect to q, for the Jacobian (f/(q of f(q), are not all
independent of one another. The derivatives of (4) with respect to m and E in fact satisfy the
constraint

(p
(m

)
r,E

= −
m
r

(p
(E

)
r,m

, (5)

as obtained by expressing the derivatives of p with respect to m and E in terms of the
thermodynamic derivative of p with respect to e, from the first expression in (4). In the
following sections, for simplicity, the abridged notation

pr
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, pE
(p
(E

)
r,m

, (6)

will denote the Jacobian derivatives of pressure. The particular perfect-gas expressions for (4)
follow from the internal energy and equation of state

e=c6T=
R

g−1
T, p=rRT (7)

for this type of gas, where c6, T, R and g respectively denote the constant-volume specific heat,
static temperature, gas constant and specific-heat ratio. The elimination of T from these two
expressions and use of (3) leads to the following familiar expressions for the equation of state
for p in terms of q

p= (g−1)re= (g−1)
�

E−
1

2r
m2�. (8)

The square of the speed of sound c for general equilibrium equations of state can be expressed
[9] as
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in terms of the Jacobian partial derivatives of p. With this result, the mass specific total
enthalpy H depends on q as

H
E+p

r
=

1
pE

(c2(1+pEM2)−pr), (10)

where Mu/c denotes the Mach number.

2.3. Characteristics analysis

For general equilibrium pressure equations of state (4), the characteristic speeds associated
with the Euler equations, i.e. the eigenvalues of the flux vector Jacobian
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have been exactly determined in closed form as

l1=u, l2,3=u9
�

pr+pE
�E+p

r
−

m2

r2

��1/2

. (12)

These eigenvalues correspond to the slopes of the characteristics, as portrayed in Figure 1 for
representative hypersonic, supersonic, sonic and subsonic flows.

Of interest, eigenvalues l2,3 directly incorporate a sound speed expression that coincides with
the isentropic partial derivative of pressure (9). Through (9), therefore, these equilibrium-gas
eigenvalues become

l1
E=u, l2,3

E =u9c, (13)

which have the same familiar form as the perfect gas eigenvalues.
Figure 1 shows the characteristics in a suitable neighborhood of a flow field point P in a

(t, x)-plane. An interesting geometric difference among supersonic, sonic and subsonic flows is
that a time axis through P is respectively outside, on the boundary and inside the domain of
dependence and range of influence of point P. Wave propagation for supersonic flows
essentially occurs by convection, monoaxially from upstream to downstream of P ; the sonic
case becomes a limiting case; for subsonic flows, instead, wave propagation occurs by both
convection and acoustics, bimodally from both upstream and downstream toward P ; for
vanishing Mach number, wave propagation is essentially acoustic.

Since gas dynamic wave propagation physically occurs by acoustics and convection, the
upstream CFD algorithm in this paper mathematically models this coupled acoustic–convec-
tion wave propagation. The algorithm identifies the genuine convection and acoustics compo-
nents within the flux Jacobian and then establishes a physically consistent upstream
approximation for each of these components.
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Figure 1. Characteristics: (a) hypersonic, (b) supersonic, (c) sonic, (d) subsonic.

2.4. Non-linear acoustics equations

The Euler equations contain the acoustics equations for vanishing Mach numbers. Identifi-
cation of these equations yields the acoustics component of the Euler flux Jacobian for any
Mach number. Upon writing momentum m in terms of the Mach number M as m=rcMu/�u �
and using the energy pressure derivative identity (5), the Euler system (1) becomes
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and for a vanishing Mach number, these equations reduce to the non-linear acoustics system
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where Aa0 denotes the zero Mach number acoustics matrix. The dependent variables in these
equations correspond to those in a flow field that originates from slight perturbations to an
otherwise quiescent field.

Heed that the energy equation toward steady state, in this case, is no longer linearly
independent from the continuity equation. This phenomenon directly explains the widely
reported convergence difficulties experienced in the CFD simulation of incompressible, i.e. low
Mach number, flows with a compressible flow formulation.

By virtue of the total enthalpy expression (10), the matrix Aa0 becomes
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with eigenvalues

l1
a0=0, l2,3

a0 =9c. (17)

where c corresponds to the zero-Mach number isentropic speed of sound (9). With l1
a0=0, the

propagation of (acoustic) waves governed by this system, therefore, corresponds to an
isentropic process with negligible flow kinetic energy.

Equations (15) contain the important expressions
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For an isentropic flow p=p(r), hence the first right-hand-side term in (19) equals (p/(x. The
second right-hand-side term must consequently vanish, which returns results (18), after using
(10). These results will conveniently simplify the acoustics–convection upstream formulation in
Sections 4.2 and 4.3.

3. NON-DISCRETE UPSTREAM-BIAS APPROXIMATION

The non-discrete, i.e. continuum or before discretization, upstream-bias approximation of the
Euler equations derives from a characteristics-bias integral statement associated with (1). The
prototype integral statement is&

V.
ŵ
�(q
(t

−f+
(f(q)
(x

�
dV=0, (20)

which is equivalent to the governing system (1) for arbitrary subdomains V. ¦V and arbitrary
test functions with compact support in V. . The characteristic-bias integral is then defined as
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V.

ŵ
�(q
(t

−f+
(f C

(x
�

dV=0, (21)

where f C corresponds to a characteristic-bias flux that automatically induces within (21) an
upstream-bias approximation for the Euler flux divergence (f/(x.

3.1. Flux Jacobian decomposition and upstream-bias integral a6erage

To develop the flux f C consider first the flux Jacobian decomposition (FJD) into L
contributions

(f
(q
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(q
(x

, (22)

where Al corresponds to a flux-Jacobian matrix component with uniform-sign eigenvalues and
al denotes a linear combination function, possibly depending upon q.

An integral average of the Euler flux divergence (f/(x as expressed through decomposition
(22) becomes&
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The flux f C is therefore defined by way of an upstream-bias integral average as&
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(ŵ+cdlŵ)alAl

(q
(x
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where the right-hand-side integral provides an upstream-bias for each matrix component
within the FJD in (22).

The positive c in (24), 0BcB1, stands for a new ‘upstream-bias’ controller, which
automatically adjusts the amount of induced upstream-bias diffusion, depending on local
solution non-smoothness, as introduced and detailed in Section 6.3. The variation dlŵ induces
the appropriate upstream-bias for the test function ŵ for each ‘l’ component within (24).
Depending on the physical significance, magnitude and algebraic sign of the eigenvalues of Al,
the variation dlŵ can vanish or become algebraically positive or negative, which corresponds
to an upstream-bias respectively in the negative or positive sense of the x-axis.

3.2. Characteristics-bias flux

The variation dlŵ in (24) becomes

dlŵ=
(ŵ
(x

dlx=
(ŵ
(x

alo, alo=dlx, (25)

where o denotes a local positive length scale, while the direction cosine al can equal 0 or +1,
−1, possibly also depending upon q.

With these specifications, the upstream-bias integral average (24) becomes&
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Considering that ŵ has compact support in V. , it vanishes on the boundary (V. of V. . As a
result, integrating (26) by parts generates
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V.
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which contains no boundary integrals. Since this integral must vanish for arbitrary test
functions ŵ and domains V. , its integrand must equal zero, which generates the following
expression for the divergence of the characteristics-bias flux f C
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�

. (28)

This expression exhibits an upstream-bias artificial diffusion, in the form of a second-order
differential expression with matrix

A %
L

l= l

alalAl. (29)

For physical consistency of the upstream bias in (24)–(28) and associated mathematical
stability of the corresponding second-order differential expression, all the eigenvalues of this
upstream matrix must be positive. This requirement becomes a fundamental upstream-bias
stability condition.

For two- and three-dimensional flows, and with implied summation on repeated indices, the
version of the characteristics-bias flux follows as a multi-dimensional generalization of
(22)–(29) as
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with 15 i, j52 for two-dimensional, and 15 i, j53 for three-dimensional flows. In these
expressions, ail now denotes the ith direction cosine of a unit vector al along the principal
wave propagation direction of wave ‘l’ and vi indicates the ith direction cosine of a unit vector
v along an arbitrary wave propagation direction. The multi-dimensional acoustics–convection
form of (31) is being completed, but will be detailed soon in a companion paper, to keep the
length of each of these two papers within an appropriate size.

The continuum expression (28), or (31), for the divergence of the characteristics-bias flux
constitutes a non-discrete generalization of the various numerical flux formulae employed in
several CFD upwind schemes. It encompasses, generalizes and unifies flux vector and flux
difference schemes as shown by the following representative examples.

3.2.1. 6an Leer’s formulation and flux 6ector splitting. Consider the van Leer formulation as
a representative flux vector splitting (FVS). In this formulation, the inviscid flux f is ‘split’ as

f= f VL+
+ f VL−

, (32)

where the Jacobian matrices of f VL+
and f VL−

respectively possess non-negative and non-
positive eigenvalues.

The FJD expression (22) encompasses (32) with L=2 as

%
L
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alAl=
(f VL+

(q
+
(f VL−

(q
, a1=1, a2=1. (33)
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The corresponding characteristics-bias flux divergence for van Leer’s FVS accrues from (28)
with c=1, a1=1, a2= −1 as

(f C
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which generalizes, in the continuum, the traditional numerical flux formulae for FVS
constructions.

The associated upstream matrix A is

A=
(f VL+

(q
−
(f VL−

(q
. (35)

The upstream-bias stability condition, however, is not automatically satisfied, even though
each of the two matrices ((f VL+

/(q) and (−(f VL−
/(q) has positive eigenvalues. This stability

condition is not unconditionally satisfied because the sum of two positive-eigenvalue matrices
does not necessarily yield a matrix with positive eigenvalues. As an example, consider the
following matrix sum of two positive-eigenvalue matrices�2

3
s

6
�

=
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3
0
2
�

+
�1

0
s

4
�
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where s is a real number. One of the eigenvalues of this matrix sum is negative for s\4. For
instance, for s=7, the eigenvalues are +9 and −1.

Most likely, however, (35) satisfies the upstream-bias stability condition for most of the flow
conditions considered in the technical literature, in view of the stable results reported. For
subsonic flows, each of the two flux vector components in (32) remains unrelated to the
physics of acoustics or convection. On the other hand, (32) is computationally advantageous,
for it calls for the discretization of simple flux vector components.

3.2.2. Roe’s formulation and flux difference splitting. Consider next Roe’s formulation as a
representative flux difference splitting (FDS) development. In this formulation, the inviscid
flux Jacobian of f is ‘split’ as

(f
(q

=XL+X−1+XL−X−1, (37)

where X and L=L+ +L− denote the right eigenvector matrix and eigenvalue diagonal
matrix of the Jacobian, all evaluated at special average values of q, with L+and L−

respectively containing non-negative and non-positive eigenvalues. The matrices on the right-
hand-side of (37), therefore, will respectively possess non-negative and non-positive
eigenvalues.

The FJD expression (22) encompasses (37) with L=2 as

%
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alAl=XL+X−1+XL−X−1, a1=1, a2=1. (38)

The corresponding characteristics-bias divergence for Roe’s formulation accrues from (28)
with c=1, a1=1, a2= −1 as
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which generalizes in the continuum the traditional numerical flux formulae for FDS
constructions.

The associated upstream matrix A is

A=X(L+ −L−)X−1, (40)

which has non-negative eigenvalues, and therefore automatically satisfies the upstream-bias
stability condition for any flow state for which no eigenvalue vanishes. The discretization of
(39) calls for more computational operations than (34), while each of the two right-hand-side
components in (37) lumps into one matrix the matrices representative of the distinct acoustics
and convection wave propagation mechanisms. On the other hand, numerous numerical results
bear out the accuracy of an FDS formulation.

4. ACOUSTICS–CONVECTION FLUX JACOBIAN DECOMPOSITION

The acoustics–convection flux Jacobian decomposition consists of components that genuinely
model the physics of acoustics and convection. These components combine the computational
simplicity of FVS with the accuracy and stability of FDS and also feature eigenvalues with
uniform algebraic signs. This formulation eliminates the unstable linear-dependence problem in
steady low-Mach number flows and satisfies by design the upstream-bias stability condition.
As the Mach number increases, the formulation smoothly approaches and then becomes an
upstream-bias approximation of the entire flux divergence, along one single direction.

4.1. Con6ection and pressure gradient components

The flux divergence (f/(x can be decomposed into convection and pressure gradient
components as

(f
(x

=
(f q

(x
+
(f p

(x
, (41)

where f q and f P respectively denote the convection and pressure fluxes, defined as

f q(q)Í
Ã

Ã

Ã

Ã

Á

Ä
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r
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r
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Ì
Ã

Ã

Ã
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=
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r

·Í
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Ä

r

m
E+p

Ì
Â

Å
, f pÍ

Á

Ä

0
p
0
Ì
Â

Å
. (42)

For supersonic flows, the Euler eigenvalues (13), associated with (f/(x all have the same
algebraic sign and the entire flux divergence can be upstream approximated along one single
direction. For subsonic flows these eigenvalues have mixed algebraic sign and an upstream
approximation for the flux divergence along one single direction remains inconsistent with the
two-way propagation of acoustic waves. Without the pressure gradient in the momentum
equation, however, the corresponding flux Jacobian eigenvalues all have the same algebraic
sign [9] and the resulting convection flux divergence can then be upstream approximated along
one single direction. The flux divergence can thus be decomposed as the linear combination
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(f
(x

=
�(f q

(x
+b
(f p

(x
n

+
�

(1+b)
(f p

(x
n

, 05b51, (43)

where the positive pressure-gradient partition function b can be chosen in such a way that all
the eigenvalues of each of the two components between brackets in (43) keep the same
algebraic sign for all Mach numbers. In this manner, these entire components can be upstream
approximated along single directions. This choice for b is possible because the eigenvalues of
a matrix are continuous functions of the matrix entries [10] and hence all the eigenvalues for
the components in (43) will continuously depend upon b. The function b will gradually
increase toward 1 for increasing Mach numbers, so that an upstream approximation for the
components in (43) smoothly approaches and then becomes an upstream approximation for
the entire (f/(x along one single direction. Decomposition (43) is thus used for an upstream
approximation of the flux divergence for subsonic and supersonic flows.

For low and vanishing Mach numbers, decomposition (43), however, is insufficient for an
accurate upstream modeling of acoustic waves. For a Mach number that approaches zero, the
Euler eigenvalues (13) can all keep the same algebraic sign only if the sound speed contribution
vanishes, which corresponds to a vanishing pressure gradient contribution and hence b

approaching zero [9]. But for b approaching zero, the eigenvalues associated with the
components in (43) approach the eigenvalues of the Jacobians

(f q(q)
(q

=Ã
Ã

Ã

Ã

Ã

Á

Ä
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−
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−
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r
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r
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r

pm
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m
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(44)

and

(f p

(q
=Ã
Á

Ä

0
pr

0

0
pm

0

0
pE

0
Ã
Â

Å
. (45)

Using the pressure derivative identity (5), the eigenvalues of these Jacobians respectively are

l1,2
q =

m
r

, l3
q=

m
r

(1+pE) (46)

and

l1,2
p =0, l3

p=pm= −
m
r

pE, (47)

which certainly all keep the same algebraic sign, but for vanishing Mach number remain far
less than the dominant speed of sound c. For low Mach numbers, therefore, an upstream
approximation for the components in (43) would inaccurately model the physics of acoustics.
This difficulty is resolved by further decomposing the pressure gradient in (43) in terms of a
genuine acoustic component, for accurate upstream modeling of acoustic waves.
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4.2. Acoustic components

Following the acoustic equations (15), the flux divergence (f/(x can be alternatively
decomposed for arbitrary Mach numbers and corresponding dependent variables r, m and E
as

(f
(x

=
(f q

(x
+
(f p

(x
=
(f q

(x
+ (Aa+Anc)

(q
(x

. (48)

In this decomposition, the matrices Aa and Anc are defined as

AaÃ
Ã

Ã

Á

Ä
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0
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0
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Ä

0
0

0

−1
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0
0

0
Ã
Ã

Ã

Â

Å

. (49)

Heed, in particular, that no flux component of f(q) exists, of which the Jacobian equals Aa.
The eigenvalues of the matrix Anc have been determined in closed form as

l1,2
nc =0, l3

nc= −cMpEu/�u �, (50)

which become infinitesimal for vanishing M. The matrix Anc can be termed a ‘non-linear
coupling’ matrix, for it completes the non-linear coupling between convection and acoustics
within (48) so that the two Euler eigenvalues l2,3

E in (13) do correspond to the sum of
convection and acoustic speeds. Since decomposition (48) will be used in the upstream-bias
formulation for small Mach numbers only and considering that the eigenvalues in (50) vanish
for these Mach numbers, no need exists to involve Anc in the upstream-bias approximation of
the flux Jacobian (11).

The eigenvalues of Aa are exactly determined in closed form as

l1
a=0, l2,3

a =9c. (51)

The matrix Aa, therefore, can be termed the ‘acoustics’ matrix, for its eigenvalues, unlike
(46)–(47), equal the speed of sound c for any Mach number. Despite its zero eigenvalue, Aa

features a complete set of eigenvectors and thus possesses the similarity form

AaXLaX−1=XLa+X−1+XLa−X−1, La=La+ +La−, (52)

where La+ and La− respectively contain non-negative and non-positive eigenvalues. The Euler
flux divergence decomposition (48) thus becomes

(f
(q

=XLa+X−1+XLa−X−1+
(f q

(q
+Anc. (53)

Since the two acoustics matrices of the right-hand-side of this expression respectively possess
non-negative and non-positive eigenvalues, a characteristics-bias approximation of these
matrices involves an upstream approximation of the first matrix and a downstream approxi-
mation of the second matrix. These approximations naturally lead to the following absolute
acoustics matrix upstream expression
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�Aa� (q
(x
X(La+ −La−)X−1 (q

(x
=Ã
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Ä

pr/c
0

(c2−pr)pr/(cpE)

0
c
0

pE/c
0

(c2−pr)/c
Ã
Â

Å

(q
(x

. (54)

Upon imposing the condition that the continuity and energy components in this matrix
product should also satisfy the acoustic field results (18), leads to the beautifully simple result

�Aa� (q
(x

=c
(q
(x

=cI
(q
(x

, I identity matrix, (55)

which indicates for this matrix product the equivalence of replacing �Aa� with the matrix cI, of
which all eigenvalues approach +c. For acoustic flows and related dependent variables E and
r, (55) is exact. For non-acoustic flows and related arbitrary Mach number dependent
variables E and r, (55) is approximate. This computationally advantageous approximation on
the acoustics upstream bias, not on the flux divergence itself, therefore, will be used essentially
in the low subsonic flow Mach number regime.

4.3. Acoustics con6ection characteristics flux di6ergence

The previous sections have shown that the flux Jacobian (11) can be equivalently expressed
as

(f
(q

=Í
Ã

Ã

Á

Ä

�(f q

(q
+b
(f p

(q
n

+
�

(1−b)
(f p

(q
n

XLa+X−1+XLa−X−1+
(f q

(q
+Anc,

(56)

where the first expression is convenient for a characteristics-bias approximation for high-
subsonic and supersonic Mach numbers and the second expression is convenient for low-
subsonic Mach numbers.

A flux Jacobian decomposition for all Mach numbers can thus be cast as the linear
combination

(f
(q

= (1−a)
!�(f q

(q
+b
(f p

(q
n

+
�

(1−b)
(f p

(q
n"

+a
!

XLa+X−1+XLa−X−1+
(f q

(q
+Anc",

(57)

with 05a51, which leads to the following acoustics–convection decomposition of the flux
Jacobian

(f
(q

=aXLa+X−1+aXLa−X−1+
�(f q

(q
+ (1−a)b

(f p

(q
n

+ (1−a)(1−b)
(f p

(q
+aAnc.

(58)

As mentioned in Section 4.2, an upstream approximation to the Euler flux Jacobian will be
developed by establishing upstream approximations only for the first four terms in (58), where
the Jacobian matrix�(f q

(q
+ (1+a)b

(f p

(q
n
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is counted as one term. The reason for this coupling is that, with reference to (43), the
eigenvalues of this Jacobian matrix will all keep the same algebraic sign, because (1−a)b5b.

One justification for this selective upstream formulation rests on the physical acoustics and
convection significance of these terms. For any magnitude of both pressure and pressure
gradient, the convection field uniformly carries information along streamlines; hence, the entire
(f q/(q can receive an upstream-bias along one single direction. The matrices XLa+X−1 and
XLa−X−1 account for the bimodal propagation of acoustic waves; these matrices are thus
used for an acoustics upstream approximation for low Mach numbers. The pressure flux f p too
accounts for the bimodal propagation of acoustic waves, but in conjunction with (f q/(q. As
the Mach number increases from zero, a larger and larger fraction (1−a)b((f p/(q) of the
pressure flux Jacobian can thus be upstreamed in the same direction as and along with (f q/(q,
while (1−a)(1−b)((f p/(q) is upstreamed in the opposite direction. As the Mach number
increases, therefore, a smaller and smaller fraction a(XLa+X−1+XLa−X−1) of (XLa+

X−1+XLa−X−1) is upstreamed. The upstream-bias function a will decrease and b will
increase as the Mach number increases, so as to ensure physical significance of the overall
upstream-bias approximation to the first four terms in (58). The function b, in turn, depends
on another function d that leads to simpler expressions.

Given the algebraic sign of the eigenvalue set of each matrix term in (58), the associated
direction cosines al for the upstream-bias expression (28) are

a1= +1, a2= −1, a3=s=sgn(u), a4= −s= −sgn(u), a5=0, (59)

where s=sgn(u) denotes the algebraic sign of u. With (58), (59), approximation (55) and
d (1−a)(2b−1), the general expression (28) leads to the acoustics–convection characteris-
tics flux divergence

(f C

(x
=
(f
(x

−
(

(x
�

oc
�

acI+s
(f q

(q
+sd

(f p

(q
� (q
(x
n

=
(f
(x

−
(

(x
�

oc
�

ac
(q
(x

+s
(f q

(x
+sd

(f p

(x
�n

,

(60)

where I denotes the identity matrix of appropriate size. In particular, the coupling of an
upstream approximation for (1−a)b((f p/(q) via a3, with a downstream approximation for
(1−a)(1−b)((f p/(q) via a4 results in an overall upstream approximation of the pressure
gradient, but with variable weight d. The operation count for expression (60) is then
comparable with that of an FVS formulation. The terms in this expression, furthermore,
directly correspond to the physics of acoustics and convection. For low Mach numbers, d=0
and (60) reduces to

(f C

(x
=
(f
(x

−
(

(x
�

oc
�

ac
(q
(x

+s
(f q

(x
�n

, (61)

which essentially induces only an acoustics upstream. Note that the components within f C

remain linearly independent of one another, which avoids the linear dependence instability in
the steady low-Mach number Euler equations. For supersonic flow, a=0 and d=1. Expres-
sion (60) in this case becomes

(f C

(x
=
(f
(x

−
(

(x
�

oc
�

s
(f
(x
�n

, (62)

which corresponds to an upstream approximation of the entire Euler flux divergence.
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5. UPSTREAM-BIAS EIGENVALUES AND FUNCTIONS

The acoustics–convection upstream functions a and d depend on the Mach number. They are
determined by enforcing the upstream stability condition on the upstream matrix for (60). The
divergence of the characteristics flux f C in (60) becomes

(f C

(x
=
(f
(x

+
(

(x
�

oc
�

acI+s
(f q

(q
+sd

(f p

(q
� (q
(x
n

. (63)

The terms between parentheses collectively constitute the upstream-bias dissipation matrix

AacI+s
(f q

(q
+sd

(f p

(q
. (64)

Despite the formidable algebraic complexity of A, all of its eigenvalues have been analytically
determined exactly in closed form. Dividing through by the speed of sound c, the non-dimen-
sional form of these eigenvalues is

l1=a+M, l2,3=a+
�

1+
1−d

2
pE

�
M9

��1−d

2
pEM

�2

+d
�1/2

. (65)

In order to ensure physical significance for the characteristics-bias flux within (60), hence for
the upstream-bias approximation to decomposition (58), the upstream-bias functions a and d

will therefore be determined by forcing the upstream-bias eigenvalues (65) to remain positive
for all Mach numbers. Following the considerations after (55), in particular, all these
eigenvalues must converge to 1 for vanishing Mach number. Rather than prescribing some
expressions for a and d and accepting the resulting variations for these eigenvalues, physically
reasonable expressions for these eigenvalues are instead prescribed and the corresponding
functions for a and b determined.

5.1. Eigen6alue l3

This eigenvalue will correlate with the absolute value Euler eigenvalue �M−1�. As a
consequence, l3 will vary between 1 and 1−M for 05M51−oM and smoothly shift from
1−M to M−1 within the sonic transition layer 1−oM5M51+oM, where oM denotes a
transition-layer parameter; in this work oM=1

5. One expression for l3 that remains smooth and
meets these requirements is the composite spline

l3(M)Í
Ã

Ã

Á

Ä

1−M,

(M−1)2

2oM

+
oM

2
,

M−1,

05M51−oM

1−oMBMB1+oM

1+oM5M

(66)

5.2. Eigen6alue l1

This eigenvalue correlates with the non-dimensional Euler eigenvalue M, but it too has to
equal 1 for M=0; it then must coincide with M for M\1 and also remain greater than l3,
as expressed through (66), for consistency with the Euler eigenvalues (13). This condition in
particular implies l1]

1
2. It thus follows that l1 will vary between 1 and M for 05M51

2+oM.
An expression for l1=l1(M) that remains smooth and meets all of these requirements is the
composite spline
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Figure 2. Upstream-bias functions.

l1(M)Í
Ã
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Ä

1−M,

(M−1
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2

2oM

+
1+oM

2
,

M,

05M51
2−oM

1
2−oMBMB1

2+oM

1
2+oM5M

(67)

5.3. Upstream-bias functions a and d and eigen6alues

From l1 and l3 in (65), the corresponding expressions for both a=a(M) and d=d(M) have
been exactly determined as

a(M)=l1(M)−M, d(M)=
(l1(M)−l3(M))(l1(M)−l3(M)+pEM)

1+pEM(l1(M)−l3(M))
. (68)

The variations of the upstream-bias functions a=a(M) and d=d(M) and the corresponding
eigenvalues from (65) are presented in Figures 2 and 3 respectively.

Figure 2 indicates that the upstream-bias functions as well as their slopes remain continuous
for all Mach numbers, with 05a51, 05d51 and a0 for M\1

2+oM, d(M)1, for
M\1+oM. As d=d(M) rises, the upstream-bias contribution from the acoustics matrix
decreases rapidly, reducing to less than 25% of its maximum at M=0.39 with, therefore,
concurrent reduction of the effect of the acoustic-flow formula (55). The variation of d=d(M)
shows that the pressure-gradient contribution to this upstream-bias formulation increases
monotonically, while remaining less than 25% of its maximum, for 05M50.7. When
d(M)1 for supersonic Mach numbers, the entire pressure-gradient is upstreamed with the
same weight as in the convection flux, in complete agreement with the physical monoaxial
wave propagation within supersonic flows.

Figure 3 shows that within 05M51+oM, the eigenvalues l1, l2, l3, smoothly approach 1
for vanishing M, indicating a physically consistent upstream-bias approximation of the
acoustic equations embedded within the Euler equations. For M\1+oM, the eigenvalues (65)
respectively coincide with the Euler flux Jacobian eigenvalues M, M+1, M−1, which
corresponds to an upstream-bias approximation of the entire flux vector, for supersonic flows.
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Figure 3. Upstream-bias eigenvalues.

6. FINITE ELEMENT WEAK STATEMENT

With reference to (21), the divergence (60) of the characteristics-bias flux f C leads to the
following characteristics-bias integral statement&

V
w
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��n

dV=0. (69)

An integration by parts of the upstream-bias expression then generates the weak statement&
V

�
w
�(q
(t

−f+
(f
(x
�

+
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(x

oc
�

ac
(q
(x

+s
(f q

(x
+sd

(f p

(x
�n

dV=0, (70)

where the surface integral on (V corresponding to the upstream-bias expression vanishes
because of the boundary condition c(x(V)=0, imposed to eliminate unnecessary boundary
upstream bias. The discrete equations then result from a finite element discretization of this
weak statement.

6.1. Galerkin finite element equations

The finite element weak statement [2,7,9] associated with (70) is&
Vh

�
wh�(qh

(t
−fh+

(f h

(x
�

+
(wh

(x
ohch�ahch (q

h

(x
+sh (f

qh

(x
+shdh (f

ph

(x
�n

dV=0, (71)

where superscript ‘h ’ signifies spatial discrete approximation. The approximation qh exists on
a partition Vh, Vh¤V, of V. This partition Vh has its boundary nodes on the boundary (V of
V and results from the union of Ne non-overlapping elements Ve, Vh=@ e=1

Ne Ve. For N mesh
nodes within Vh, there exist clusters of ‘master’ elements Vi

m, each comprising only those
adjacent elements that share a mesh node xi, which implies existence of exactly N master
elements. As Figure 4 shows, on each master element Vi

m the discrete test function whwi=
wi(x), 15 i5N, will coincide with the ‘pyramid’ basis function with compact support on Vi

m.
Such a function equals one at node xi, zero at all other mesh nodes, and also identically
vanishes both on the boundary segments of Vi

m not containing xi, and elsewhere within the
computational domain outside Vi

m.
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Figure 4. Master element Vi
m and test function wi=wi(x).

Note that Vi
m represents a ‘finite volume’ as used in finite volume schemes, which, however,

do not employ pyramid test functions. The following developments are based on a linear
pyramid test function wi, which can be expressed as

wi(x)Í
Ã

Ã
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Ä

x−xi−1

Dxi−1/2

,

xi+1−x
Dxi+1/2

,

xi−15x5xi
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. (72)

The discrete solution qh at each time t assumes the form of the following linear combination

qh(x, t) %
N

j=1

wj(x) ·qh(xj, t) (73)

of nodal solution values and trial functions, which coincide with the test functions wj(x) for a
Galerkin formulation. Similarly, the source f=f(x, q(x, t)) and fluxes f= f(q(x, t)), f q=
f q(q(x, t)) and f p= f p(q(x, t)) are discretized through the group expressions

fh(x, t) %
N

j=1

wj(x) ·f(xj, qh(xj, t)), f h(x, t) %
N

j=1

wj(x) ·f(qh(xj, t)),

f qh
(x, t) %

N

j=1

wj(x) ·f q(qh(xj, t)), f ph
(x, t) %

N

j=1

wj(x) ·f p(qh(xj, t)). (74)

The notation for the discrete nodal variable and fluxes is then simplified as qj(t)qh(xj, t),
fj(t)fh(xj, t), fj f h(xj, t), f j

q f qh
(xj, t), f j

p f ph
(xj, t) and expansions (73) and (74) are then

inserted into (71), which yields the discrete finite element weak statement&
Vh

wi
�

wj
�dqj

dt
−fj

�
+
(wj

(x
fj
n

dV+
&

Vh

(wi

(x
(wj

(x
ohch[ahchqj+shf j

q+shdhf j
p] dV=0, (75)

for 15 i5N, with o the set equal to a reference length within each element, typically a measure
of the element size. While an expression like (73) for ch, ah, ch, sh and dh can be directly
accommodated within (75), each of these variables in this study has been set equal to a
piecewise constant for computational simplicity, one centroidal constant value per element.
Since the test and trial functions wi are prescribed functions of x, the spatial integrations in
(75) are then exactly carried out, which transforms (75) into a system of ordinary differential
equations (ODE) in continuum time for determining at each time level t the unknown nodal
values qh(xj, t).
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For a clear comparison between traditional finite difference/volume schemes [3] and the
acoustics–convection finite element algorithm (75), at any interior node ‘i ’ of the representa-
tive grid in Figure 4, Equation (75) with oh (Dxi+1/2)/2 can be equivalently recast in
difference notation as

Dxi−1/2

6
�dqi−1

dt
+2

dqi

dt
−fi−1−2fi

�
+

Dxi+1/2

6
�

2
dqi

dt
+

dqi+1

dt
−2fi−fi−1

�
= −

1
2

[(cac)i−1/2(qi−qi−1)− (cac)i+1/2(qi+1−qi)]

−
1
2

(( f i
q− f i−1

q ) ·(1+ (sc)i−1/2)+ ( f i+1
q − f i

q) ·(1− (sc)i+1/2))

−
1
2

(( f i
p− f i−1

p ) ·(1+ (scd)i−1/2)+ ( f i+1
q − f i

q) ·(1− (scd)i+1/2)), (76)

which uniquely couples several time derivatives at each node ‘i ’ and features a linear
combination of two-point upstream and downstream flux differences. In these finite element
equations, the values of the controller ch determines the combination weights of the down-
stream and upstream expressions, and since ch remains non-negative these equations induce
the appropriate upstream bias since the upstream weight 1+ci+1/2 always exceeds the
downstream weight 1+ci−1/2. As a result, the finite element weak statement (75) generates
consistent variable upstream-bias discrete equations that correspond to an upstream-bias
discretizations for the original Euler system (1), within a compact block tridiagonal matrix
statement.

For smooth solutions, these equations will still couple upstream and downstream points
even for supersonic flows. The potential objection that one such algorithm would violate the
physics of mono-directional wave propagation for supersonic flows is easily addressed with
Courant’s and Hilbert’s classical developments [11] for non-linear hyperbolic systems. They in
fact concluded that while waves propagate along characteristics, smooth solutions can be
expanded in Taylor’s series within arbitrary regions encircling any given point and along any
direction radiating upstream or downstream from the point.

For a closer comparison with upwind finite volume schemes [3], the finite element equations
(76) can be rearranged to generate the ‘numerical flux’

Fi+1/2
fi+ fi+1

2
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2
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2
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+
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2
( f i+1

p − f i
p)
n

, (77)

which corresponds to the discrete counterpart of the characteristics-bias flux within (60). By
virtue of this numerical flux, Equation (76) is recast as

Dxi−1/2

6
�dqi−1

dt
+2

dqi

dt
−fi−1−2fi

�
+

Dxi+1/2

6
�

2
dqi

dt
+

dqi+1

dt
−2fi−fi+1

�
= − (Fi+1/2−Fi−1/2), (78)

which shows that the finite element weak statement (75) naturally leads to a discretely
conservative algorithm.
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6.2. Boundary equations and pressure boundary condition

The integral statement (70) directly yields a set of consistent boundary differential equations,
for both unconstrained boundary variables and for pressure, to enforce a pressure boundary
condition at a subsonic outlet. These equations do not require any algebraic extrapolation of
variables, but rather couple the time derivatives of boundary and interior node variables within
the boundary cell.

For the linear elements in this study, let N and N−1 denote the nodes within the outlet
boundary element, with N corresponding to the outlet node. For the discrete finite element
equation associated with boundary node xN, the controller c and test function w satisfy the
conditions c=0 and w(xN−1)=0, w(xN)=1.

The boundary differential equation from (75) corresponding to an outlet node becomes

DxN−1/2

3
�dqN−1

dt
+2

dqN

dt
−fN−1−2fN

�
= − ( fN− fN−1). (79)

This equation directly couples the time derivatives of the solution q at the adjacent boundary
and interior nodes xN and xN−1. A similar equation is then obtained at an inlet, mutatis
mutandis. Furthermore, no upstream-bias is necessary within a boundary equation, hence
c=0, because as (79) shows, this finite element boundary equation directly yields an upwind
approximation for the divergence of f.

Concerning the pressure outlet boundary condition, this is naturally enforced within the
surface integral that emerges in the momentum equation weak statement. The convection and
pressure flux decomposition

f(q)= f q(q)+ f p(q) (80)

is first inserted into the non-discrete integral statement (70); subsequent integration by parts of
the pressure gradient therein generates the weak statement&

V
w
�(q
(t

−f+
(f q

(x
�

dV−
&

V

(w
(x

f p dV+ [w(x)f p]x=xN−1

x=xN =0. (81)

A subsequent linear finite element discretization of (81) yields

DxN−1/2

3
�dqN−1

dt
+2

dqN

dt
−fN−1−2fN

�
= − ( fN

q − fN−1
q )− ((2fout

p − fN
p )− fN−1

p ). (82)

In this equation, fN
p denotes the outlet node pressure, as calculated through the equation of

state (8), whereas quite significantly, fout
p can correspond to the specified outlet pressure

boundary condition. This strategy for imposing an outlet pressure boundary condition remains
intrinsically stable. Suppose, for instance, that some numerical perturbation forces fN

p to
decrease below the imposed fout

p . In this case the outlet boundary equation (82) induces a
negative time rate of change for mN, which leads to a corresponding reduction in mN. From the
equation of state (8), this reduction then leads to an increase in fN

p , which corresponds to a
stable restoration of the imposed pressure condition. A similar conclusion on the stability of
(82) is achieved by considering a perturbation increase in fN

p . The results in Section 8 confirm
the accuracy and stability of this pressure boundary condition procedure.

6.3. Discrete upstream-bias controller ch

This section introduces a new upstream-bias controller ch. This controller varies in the range
05cmin5ch5cmax51 and controls within (76) the amount of induced upstream-bias, hence
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artificial diffusion. By design ch=0 corresponds to a classical centered discretization, hence
no induced diffusion; ch=1, instead, corresponds to a fully upwind formulation, hence
maximum diffusion.

Denote then with ci the numerical value of the controller at the representative node ‘i ’. By
analogy with (73), the discrete controller ch(x, t) is cast as the following linear expansion

ch(x, t)= %
N

j=1

wj(x)c(xj, t)= %
N

j=1

wj(x)cj (83)

and the centroidal evaluation of this expression within each element then yields

ci+1/2=
ci+ci+1

2
. (84)

In regions of smooth flow, ch approaches cmin for a local reduction of upstream-bias
diffusion; in region of discontinuous solution, ch approaches cmax for an essentially non-
oscillatory resolution of local discontinuities. The controller will thus correlate with a local
measure 8i of slope discontinuity.

For a smooth variation, ci is expressed as a function of the measure 8i as the composite
spline

ciÍ
Ã

Ã

Ã

Ã

Á

Ä

cmin,

cmax+
cmax−cmin

(8D−8C)3 ,

[− (8D−38C)8D
2 −68C8D8i+3(8D+8C)8 i

2−28 i
3],

cmax,

8 i58C

8CB8iB8D

8D58i

, (85)

where 058i51 and the positive 8C and 8D respectively denote threshold continuity and
discontinuity measures. Figure 5 shows the smooth variation of this type of spline controller.

The implementation of ch thus requires a set of points within Vh where the slopes of the
approximate solution are generally discontinuous. For the finite element approximation (73),

Figure 5. Variation of controller ci.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 821–860 (1999)



ACOUSTICS–CONVECTION EULER SOLVER 843

Figure 6. Slope discontinuities and local unit vectors.

this set of points is the set of finite element side nodes shared by distinct finite elements in Vh,
for the continuous expansion (73) changes approximating polynomial from element to element,
which implies that solution slopes are generally discontinuous at element side nodes. This type
of slope discontinuity is depicted in Figure 6 via the local normal unit vectors nL and nR

respectively to the left and right of the slope-discontinuity point P, where there exist two
distinct normal unit vectors, one for each of two elements sharing the node.

With reference to Figure 6, the magnitude nR−nL of the vector difference nR−nL

becomes proportional to a bounded measure of local-slope discontinuity. If the graph slope is
continuous at P, then nL coincides with nR and nR−nL vanishes. On the other hand, when
a slope discontinuity exists at P, as shown in the figure, nR−nL varies between 0 and 2
depending on the magnitude of the slope jump. A positive measure of slope discontinuity that
vanishes for continuous slopes, remains bounded and strictly varies between 0 and 1 can thus
be defined as

8i
1
2

nR−nLx=xi
. (86)

By virtue of the law of cosines, the local measure 8i also equals

8i=
�1−cos u

2
�

x=xi

1/2

, (87)

where u denotes the angle between the unit vectors in Figure 6.
With reference to Figure 7 and (87), specific numerical values for 8C, 8D, cmin and cmax can

be easily established. At a point of solution smoothness, like point i−1 in the figure, nL will
be parallel to nR, hence u=0° which from (87) leads to 8C=0. At a shock, instead, u can
become greater than 90°, as shown in the figure for point i. The threshold u=90° is thus
selected for 8D, which from (87) leads to 8D=1/
2. Numerous numerical experiments with
the acoustics–convection algorithm have indicated that a minimal amount of ‘background’
upstream bias is necessary for convergence; this finding is not surprising, since the formulation
is essentially centered, hence devoid of any upstream-bias dissipation for ch=0. Hence,
cmin\0 with typical numerical values in the range 1/45cmin51/2. Concerning cmax, a
relation with cmin readily follows from the requirement that in the neighborhood of a shock
the maximum upstream bias can at most correspond to a fully upwind algorithm, for an
essentially non-oscillatory capturing of shock waves. Hence, from (84), ci+1/251 with i+1

2

denoting the centroid of a finite element (cell) that supports a shock. For a typical case of a
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shock captured within at least two cells, as shown in Figure 7, (85) leads to ci=cmax and
ci+1#cmin. From (84), therefore

cmax+cmin

2
51[cmax52−cmin, (88)

which linearly decreases as a function of increasing cmin. The specific objective of letting ch

vary as the solution evolves is to minimize induced upstream-bias dissipation for maximum
accuracy within the prescribed computational stencil. As its distinguishing design feature, the
acoustics–convection upstream resolution algorithm nevertheless remains an authentic charac-
teristics-bias formulation for any ch with cmin5ch5cmax.

The general expression of 8i corresponding to a scalar component qc
h of qh directly derives

from the finite element expansion (73), which can be expressed in synthetic implicit form as
F(qc

h, x, t)qc
h−qc

h(x, t)=0. Hence, a normal unit vector n can be cast at each time level t as
ngrad F(qc

h, x, t)/��grad F ��, where the vector operator ‘grad’ encompasses the dependent
variable qc

h. The expression for the corresponding 8i at time level t and point xi then becomes

8i8h(xi, t)

=
1
2
Ã
Ã

Ã

Æ

È

: 1'
1+

�(qc
hR

(x
�2

−
1'

1+
�(qc

hL

(x
�2

;2

+Ã
Ã

Ã

Á

Ä

(qc
hR

(x'
1+

�(qc
hR

(x
�2

−

(qc
hL

(x'
1+

�(qc
hL

(x
�2
Ã
Ã

Ã

Â

Å

2

Ã
Ã

Ã

Ç

É
x=xi

1/2

,

(89)

where the partial derivatives are determined through the finite element expansion (73), and
where superscripts L and R indicate evaluation within the elements respectively to the left and
right of x=xi. The form of (89) at node i of a uniform grid is

8i=
1
2
�� Dx


Dx2+ (qci+1
−qci

)2
−

Dx


Dx2+ (qci
−qci−1

)2

�2

+
� qci+1

−qci


Dx2+ (qci+1
−qci

)2
−

qci
−qci−1


Dx2+ (qci
−qci−1

)2

�2n1/2

, (90)

Figure 7. Local unit vectors at a shock.
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Table I. Runge–Kutta coefficients

b1 b2 a11 a21 a22

IRK2 3−
3
4


3−1
2

2−
31+
3
4

3−
3
6

where the denominator never vanishes. This expression, furthermore, remains bounded and
differentiable for arbitrary nodal values of qc

h. For the sole purpose of determining the order
of this expression with respect to Dx, for a smooth solution over any two contiguous elements,
the discrete solution values qc, i−15 j5 i+1, over these elements, can be considered as the
nodal values of a single auxiliary continuous functions qc(x, t): a Lagrangian, trigonometric or
other interpolant of the qcj

s over both elements. With this consideration, the Taylor’s series
expansion of (90) yields

8i=
�q¦c (xi, t)�

1+ (q %c(xi, t))2

Dx
2

+O(Dx2)=K[1+ (q %c(xi, t))2]1/2 Dx
2

+O(Dx2), (91)

where superscript prime indicates differentiation with respect to x and K denotes the local
curvature. This expansion reveals that 8i decreases for vanishing Dx. Even for large slopes,
furthermore, 8i remains of order Dx in regions of small curvature. Only when both curvature
and slope drastically rise, e.g. at a shock, will 8i increase, which precisely corresponds to the
desired behavior.

7. IMPLICIT RUNGE–KUTTA TIME INTEGRATION

The finite element equation (76) along with appropriate boundary equations and conditions,
delineated in Sections 6.2 and 8, can be abridged as the non-linear ODE system

M
dQ(t)

dt
=F(t, Q(t)), (92)

where M[dQ(t)/dt ] corresponds to the coupling of time derivatives in (76), and F(t, Q(t))
represents the remaining terms in (76). The numerical time integration of (92) in this study
takes place through a new class of two-stage diagonally implicit Runge–Kutta algorithms [7]
(IRK2) expressed as

Qn+1−Qn=b1K1+b2K2,

MK1=Dt ·F(tn+c1Dt, Qn+a11K1), (93)

MK2=Dt ·F(tn+c2Dt, Qn+a21K1+a22K2),

where n now denotes a discrete time station and b1, b2, c1, c2, a11, a21 and a22 indicate constant
Runge–Kutta coefficients subject to the constraints ci=�j=1

i aij and �i=1
2 bi=1. The coeffi-

cients for second-order accuracy are listed in Table I. With these coefficients, in particular,
algorithm (93) becomes absolutely stable for arbitrary stiff non-linear dissipative ODE systems
[7,12].

This algorithm is implicit because the entries in the arrays K1 and K2 remain coupled and are
then computed by solving algebraic systems. Diagonally implicit signifies that K1 is determined
independently of K2. Thus, given the solution Qn at time tn, K1 is computed first, followed by
K2. The solution Qn+1 is then determined by way of the first expression in (93).
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The terminal numerical solution is then determined using Newton’s method, which for the
implicit fully-coupled computation of the IRK2 arrays Ki, 15 i52, is cast as�

M−aiiDt
�(F
(Q

�
Qi

p

p n
(Ki

p+1−Ki
p)=DtF(tn+ciDt, Qi

p)−MKi
p,

Qi
pQn+ai1K1

p+ai2K2
p, (94)

where aij=0 for j\ i, p is the iteration index and K1
pK1 for i=2; for linear finite elements,

the Jacobian

Ji(Q)M−aiiDt
�(F
(Q

�
Qi

p

p

(95)

then becomes a block tridiagonal matrix. For all the results documented in the discussion
section, the initial estimate Ki

0 is set equal to the zero array, while only one iteration is
executed for (94) within each time interval. In this mode, Newton’s iteration becomes akin to
a classical direct linearized implicit solver.

8. COMPUTATIONAL RESULTS

The computational results have validated the accuracy and essential monotonicity performance
of the acoustics–convection upstream resolution algorithm for transient and steady smooth
and shocked mixed subsonic/supersonic flows. The algorithm has generated essentially non-
oscillatory results that automatically preserve a constant total enthalpy as well as smoothness
of both enthalpy and linear momentum across steady normal shocks. These results reflect
available exact solutions and numerical results independently generated [13] using van Leer’s
and Roe’s schemes. The benchmarks in this section cover a total of five different perfect gas
flows encompassing flows within: a shock tube, a convergent–divergent (DeLaval) nozzle and
a steeply diverging nozzle. The corresponding spatial computational domain V for all the
results presented is defined as: V [a, b ]= [0, 1], uniformly discretized into 100 linear finite
elements, hence Dx=0.01. For each benchmark, the calculations proceeded with a prescribed
constant maximum Courant number Cmax defined as

Cmaxmax{�u+c �, �u−c �, c}
Dt
Dx

. (96)

Given Dx and Cmax for each benchmark, the corresponding Dt was thus determined as

Dt=
CmaxDx

max{�u+c �, �u−c �, c}
. (97)

As detailed in Section 6.3, the upstream-bias controller uses one scalar component of the
dependent variable q. In this study, the algorithm has employed total energy E to calculate c.

All the solutions in these validations are presented in non-dimensional form, with density r,
pressure p, energy E and enthalpy H made dimensionless through their respective inlet
stagnation (total) values. The non-dimensional speed is obtained by way of the stagnation
speed of sound divided by 
g. The reference speed ur thus becomes ur=
gptotin

/rtotin
/
g=


gptotin
/rtotin

. Linear momentum is then made dimensionless through total inlet density and
reference speed. For consistency with (1)–(2), however, all initial conditions and actual
calculations have to employ a non-dimensional E made dimensionless through stagnation
pressure.
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8.1. Shock-tube flow

This benchmark consists in determining the gas flow that evolves from a rest state within a
straight tube. The tube is initially divided into two chambers separated by an impermeable
diaphragm placed at the midpoint on the tube axis. The non-dimensional initial conditions for
the gas in each of the two chambers are

r=1.00, m=0.00, E=2.50, 0.05x50.5;

r=0.125, m=0.00, E=0.25, 0.5Bx51.0. (98)

The diaphragm ruptures at t=0 and the solution corresponding to t=0.14152 is sought. At
this time station, the exact solution features a normal shock centered at x=0.75, for each of
the components of the dependent variables in q ; the distribution of density r also develops a
contact discontinuity centered at x=0.62. Figure 8(a)–(c) present three density distributions
as obtained with the acoustics–convection upstream resolution algorithm for Cmax=1.0, but
with a constant upstream-bias controller c.

The numerical values for c for these three solutions are c=1.0, 0.75 and 0.5 respectively
corresponding to 100%, 75% and 50% upstream bias. The figures show that a decrease in
upstream-bias, hence associated artificial diffusion, corresponds to an expected increase in
solution resolution. The solution in Figure 1(c), for c=0.5, already displays correct solution
features with contact discontinuity and normal shock centered at the exact locations, even
though the sharp decrease in density modeling the contact discontinuity appears somewhat
diffused. Note, however, that this solution remains essentially non-oscillatory without employ-
ing a fully upwind discretization with MUSCL-type extrapolation of variables.

Figures 8(d) and 9(b) present the solution generated with a variable controller c, with
0.255cB0.62 and Cmax=1.0. This solution remains essentially non-oscillatory throughout
the computational domain. The contact discontinuity in Figure 8(d) is now resolved over
about five nodes, with increased overall solution sharpness. The normal shock is captured over
two nodes and the two plateaux juxtaposed the contact discontinuity remain essentially flat.
Figure 9(a) presents the corresponding distribution of total energy E, which reflects the
features in the density solution.

This figure also shows the associated variation of c, indicating that c remains close to its
minimum over the smooth parts of the solution. Only at slope discontinuities does c increase,
following its design features documented in Section 6.3. Therefore, c increases marginally, at
the expansion extremities and contact discontinuity, and more markedly at the normal shock.
At these locations the energy slopes abruptly change. In particular, the larger increases of c

remain localized at the shock region, where it is precisely needed for an essentially non-
oscillatory capturing of the shock. This shock is captured with c reaching 0.5, which
corresponds to just 50% upstream bias. Away from the shock and other slope discontinuities,
c=0.25 which corresponds to a mere 25% upstream bias. This solution is therefore achieved
with an essentially centered discretization, which leads to the conclusion that a uniformly fully
upwind formulation is not strictly necessary within a characteristics-bias algorithm to generate
an essentially sharp and non-oscillatory solution.

Figure 9(b) presents the distributions of Mach number M and associated acoustics and
convection upstream-bias functions a and d. The solution for M correlates with that for r and
E with essentially flat plateaux and sharp normal shock. The distribution of a indicates that
the acoustics upstream-bias induced via the absolute acoustics matrix (55) remains significant,
at a level greater than 30%, only for M50.3. Without this acoustics upstream bias, essential
monotonicity is lost. For these Mach numbers, d=0, which corresponds to a centered
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approximation of the pressure gradient, for any c. For M\0.3, a decreases sharply,
accompanied by a corresponding rise in d. In particular, a=0 for the Mach numbers
corresponding to the contact discontinuity, which indicates that the absolute acoustics matrix
upstream-bias term ac (q/(x plays no local role in the calculation of this discontinuity. With
the calculated values of c, the characteristics-bias formulation for these Mach numbers is
realized only through the convection and pressure gradient components intrinsic to the Euler
flux divergence. The aesthetic appearance of the calculated contact discontinuity, therefore, is
essentially due to the linear flux approximation employed, which only uses two nodes per cell
without extrapolation of variables. As M increases towards its higher plateau, d reaches its
peak numerical value of about 0.75, which, with c=0.35, corresponds to a mere 26.3%
upstream-bias in the approximation of the pressure gradient. This level of upstream bias
further decreases toward the shock, settling to a level of 15% with d#0.3 and c#0.5 at the
shock.

Figure 10(a) and (b) display the associated distributions for speed and static pressure. The
plateaux in these distributions remain flat and unperturbed by the density contact discontinu-
ity, with sharp shocks captured over about two nodes.

Figure 8. Density upstream-bias: (a) 100%, (b) 75%, (c) 50%, (d) 25%–50% controlled.
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Figure 9. Controlled upstream: (a) energy and controller, (b) Mach number, a and d.

8.2. Flows in a con6erging–di6erging nozzle

These benchmarks test the capability of the algorithm to calculate steady isentropic and
shocked flows that contain a low-Mach number subsonic region. The nozzle cross-section area
distribution remains continuous with continuous slopes, but contains a discontinuous throat
curvature [13], as shown in Figure 11. This feature will induce a nozzle throat discontinuous
curvature in the flow variables even for an isentropic flow, which makes this benchmark
particularly useful to assess algorithm resolution.

The nozzle area ratio distribution for these benchmarks is

A(x)
A*in

=
!1.75−0.75 cos(p(2x−1)),

1.25−0.25 cos(p(2x−1)),
05x51

2
1
25x51

, (99)

Figure 10. Controlled upstream: (a) speed, (b) pressure.
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Figure 11. Variation of area ratio A(x)/A�.

with

A(0)
A*in

=2.5,
A(1)
A*in

=1.5. (100)

The initial conditions for the gas correspond to an M=0.23954 uniform state, leading to the
following initial numerical values for r, m and E throughout the nozzle

r=0.97188, m=0.27389, E=2.44072. (101)

The inlet remains subsonic and the physically admissible boundary conditions specified at the
inlet are constant Dirichlet conditions on density r and total energy E, equal to the initial
conditions. An outlet boundary condition is also imposed at a subsonic outlet, as discussed in
Section 6.2.

8.2.1. Isentropic supersonic flow. For the given initial conditions, the outlet is temporarily
subsonic and a pressure boundary condition is imposed. This corresponds to the jump decrease
in static pressure: p/ptotin

=0.16017, pertinent to the terminal steady state outlet supersonic
Mach number M=1.85413. The algorithm monitors the outlet Mach number during the
calculations and when it exceeds 1, the outlet pressure boundary condition is released, allowing
the calculations to proceed toward a steady state without any further outlet boundary
condition.

Figure 12(a) and (b) present the convergence rate and steady state speed and Figure 13(a)
and (b) show the distributions of density, linear momentum, pressure and enthalpy.

The acoustic–convection upstream resolution algorithm generated a steady state with a
reduction of the maximum residual by 13 orders of magnitude, down to machine zero in about
25 time steps with Cmax=400. The calculated speed reflects the exact solution, indicated with
a solid line. This distribution clearly shows the sonic point curvature discontinuity, which
remains devoid of any unphysical expansion shock and follows the exact solution.

The distributions of density, linear momentum, pressure and enthalpy in Figure 13(a) and
(b) also reflect the corresponding exact solutions with the curvature discontinuity clearly
resolved. The algorithm has also correctly held constant the computed enthalpy, which satisfies
the steady adiabatic-flow constant enthalpy condition. Figure 14(a) presents the distributions
of total energy E, which visually coincides with the exact solution, and upstream-bias
controller c, with 0.255cB1.0. Since the solution does not contain any shock, c varies

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 821–860 (1999)



ACOUSTICS–CONVECTION EULER SOLVER 851

Figure 12. Isentropic flow: (a) convergence rate, (b) speed.

modestly, with c#0.25 for this steady state, which corresponds to a 25% upstream-bias. The
obvious location where c increases mildly to c=0.275, is at the curvature discontinuity, which
correlates with the theoretical finding (91).

Figure 14(b) presents the distribution of Mach number M, which also reflects the exact
solution, and the corresponding distributions of the acoustics and pressure gradient upstream-
bias functions a and d. According to these distributions, the acoustics upstream-bias vanishes
for M]0.7 and is present with decreasing weight only in the subsonic region of the flow, for
MB0.7. For these Mach numbers, d#0, which corresponds to a centered approximation of
the pressure gradient for any c. For increasing M beyond M=0.7, d rises briskly, which
corresponds to a rapid upstream-bias growth in the approximation of the pressure gradient.
For M\1, d=1, which makes the pressure gradient upstream-bias weight equal to that on the
convection divergence.

Figure 13. Isentropic flow: (a) density and momentum, (b) pressure and enthalpy.
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Figure 14. Isentropic flow: (a) energy and controller, (b) Mach number, a and d.

8.2.2. Flow with embedded normal shock. A normal shock wave features in this steady flow
as a result of the subsonic outlet pressure boundary condition p/ptotin

=0.84, imposed as an
impulsive step decrease from the initial conditions and for the entire flow evolution toward
steady state. The theoretical solution places the normal shock at the area ratio As/A*in=
1.09896, which corresponds to the interior of the finite element with node co-ordinates x=0.64
and x=0.65, within the computational domain. The exact shock Mach numbers are Msup=
1.36989 and Msub=0.75274, which lead to the stagnation pressure and critical area ratios
ptotout

/ptotin
=A*in/A*out=0.96537. The associated outlet area ratio and Mach number are

Aout/A*in=1.5, Mout=0.45025.
Figure 15(a) and (b) present the convergence rate and steady state speed. The steady state

was achieved in about 25 time steps, for a total of about 50 IRK cycles, with Cmax=400 and
a reduction of the maximum residual by 13 orders of magnitude, down to machine zero. In
comparison, Reference [13] reports that a steady state for the same problem was achieved with
a minimum of 175 cycles. The calculated speed reflects the exact solution, indicated with a

Figure 15. Shocked flow: (a) convergence rate, (b) speed.
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Figure 16. Shocked flow: (a) density and momentum, (b) pressure and enthalpy.

solid line. This distribution clearly shows the sonic point curvature discontinuity, as well as the
normal shock which is captured at the correct location, within about two elements with a mild
shock foot undershoot, similar to that in Reference [13].

The distributions of static density and pressure in Figure 16(a) and (b) also reflect the
corresponding exact solutions with the curvature discontinuity clearly resolved and normal
shock sharply captured over only one internal node with slight shock foot overshoots.
Significantly, the algorithm has correctly generated continuous distributions for both linear
momentum m and enthalpy H across the normal shock, without any shock bump. Further-
more, the computed H remains accurately constant, as has to be the case for a steady adiabatic
flow.

Figure 17(a) presents the distributions of total energy E, which visually coincides with the
exact solution in solid line, and upstream bias controller c, with 0.55cB1.0. The controller
remains essentially constant over smooth solution regions, with c=0.5, which corresponds to
a 50% upstream-bias. At the shock, c rapidly rises, reaching a c#0.9 extremum, which
induces a 90% upstream-bias. This increase in c appears sudden; presumably a slightly milder
variation of c at the shock could obviate the modest overshoots in r, p and E. On the other
hand, the algorithm succeeds in focusing an increased level of upstream-bias, hence artificial
dissipation at the shock region only, precisely where required for an essentially sharp and
non-oscillatory solution.

Figure 17(b) presents the distribution of Mach number M, which also reflects the exact
solution, and the corresponding distributions of the acoustics and pressure-gradient upstream-
bias functions a and d. According to these distributions, the acoustics upstream-bias is present,
with decreasing weight, only within the inlet and outlet subsonic regions of the flow. This type
of upstream-bias vanishes in the supersonic region, including the normal shock, hence it plays
no local role in the computation of the shock. Shock resolution, therefore, is entirely due to
the convection and pressure gradient upstream biases, which occur with the same weight at the
supersonic side of the shock, where d=1. As M falls across the shock, so does d, which
indicates that the upstream bias in the approximation of the pressure gradient quickly
decreases, leading to an essentially centered approximation of this gradient towards the outlet.
For all the distributions computed for this benchmark, the outlet variations remain smooth
and undistorted; in particular, the calculated outlet pressure coincides with the imposed
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Figure 17. Shocked flow: (a) energy and controller, (b) Mach number, a and d.

pressure boundary conditions, which reflects favorably on the surface integral pressure
enforcement strategy delineated in Section 6.2.

8.3. Flows in a di6erging nozzle

These benchmarks examine the capability of the algorithm to calculate steady isentropic and
shocked flows that involve a high-Mach number supersonic region. The nozzle cross-section
area distribution features a steep increase in the diverging region [13], as shown in Figure 18,
which makes it challenging numerically to compute a non-oscillatory shock located in such a
region.

The nozzle area ratio distribution for these benchmarks is

A(x)
A*in

=a+b tanh(8x−4), (102)

with

a=1.39777, b=0.34760, (103)

Figure 18. Variation of area ratio A(x)/A�.
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Figure 19. Isentropic flow: (a) convergence rate, (b) speed.

and

A(0)
A*in

=1.05041,
A(1)
A*in

=1.74514. (104)

The initial conditions for the gas correspond to an M=1.26 uniform supersonic state, which
leads to the following initial state throughout the nozzle

r=0.50189, m=0.65187, E=1.37567. (105)

The inlet flow is constrained supersonic at M=1.26; Dirichlet boundary conditions are thus
enforced on density r, linear momentum m and total energy E. An outlet pressure boundary
condition is also imposed for the simulation of a shocked flow.

8.3.1. Isentropic supersonic flow. For the given initial condition, the outlet is already
supersonic, hence no boundary conditions are enforced at the outlet. The solution of the flow
from the initial conditions is thus entirely driven by the area source term in the governing
Euler equations (1) and (2).

Figure 19(a) and (b) presents the convergence rate and steady state speed. The acoustics–
convection upstream resolution algorithm generated a steady state with a reduction of the
maximum residual by 14 orders of magnitude, down to machine zero in about 60 time steps
with Cmax=800. The calculated speed reflects the exact solution, indicated with a solid line.
This distribution clearly shows the rapid increase that is triggered by the drastic nozzle
enlargement.

The distributions of density, linear momentum, pressure and enthalpy in Figure 20(a) and
(b) also mirror the corresponding exact solutions, with swift expansions clearly resolved. The
algorithm has also correctly held constant the computed enthalpy, which satisfies the steady
adiabatic flow constant enthalpy condition. Figure 21(a) presents the distributions of total
energy E, which remains indistinguishable from the exact solution, and upstream bias
controller c, with 0.255cB1.0. Since the solution is smooth, c stays virtually constant with
c#0.25 for this steady state, which corresponds to a 25% upstream bias.

Figure 21(b) presents the distribution of Mach number M, which also agrees with the exact
solution. and the variations of acoustics and pressure gradient upstream-bias functions a and
d.
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Figure 20. Isentropic flow: (a) density and momentum, (b) pressure and enthalpy.

For a supersonic flow, a0 and d1. No acoustic matrix upstream-bias is thus present in
this solution and the entire flux divergence receives a uniform upstream-bias approximation.

8.3.2. Flow with embedded normal shock. A normal shock wave features in this steady flow
as a result of the subsonic outlet pressure boundary condition p/ptotin

=0.746, imposed as an
impulsive step decrease from the initial conditions, for the entire flow evolution toward steady
state. The theoretical solution places the normal shock at the area ratio As/A*in=1.35016,
which corresponds to the interior of the finite element with node co-ordinates x=0.48 and
x=0.49, within the computational domain. The exact shock Mach numbers are Msup=
1.71319 and Msub=0.63717, which lead to the stagnation pressure and critical area ratios
ptotout

/ptotin
=A*in/A*out=0.85022. The associated outlet area ratio and Mach number are

Aout/A*in=1.74514, Mout=0.43629.
Figures 22(a) and (b) present the convergence rate and steady state speed. The algorithm is

certainly capable of driving the maximum residual down to machine zero, with a total residual
reduction by 14 orders of magnitude, with Cmax=12; a residual reduction by six orders of

Figure 21. Isentropic flow: (a) energy and controller, (b) Mach number, a and d.
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Figure 22. Shocked flow: (a) convergence rate, (b) speed.

magnitude occurs within about 250 time steps. Other initial conditions, closer to the steady
state, would presumably lead to faster convergence. These results, however, compare favorably
with those in Reference [13], which reports lack of convergence with Roe’s algorithm for this
benchmark and with a similar computational solution. This comparison rests on the observa-
tion that the acoustics–convection upstream resolution algorithm is not a purely flux vector
splitting algorithm, but it also uses, like Roe’s algorithm, a Riemann solver, although applied
to the acoustics equations. The calculated speed reflects the exact solution, indicated with a
solid line, and clearly shows the expected rapid rise preceding the shock as well as an excellent
calculated normal shock, captured over only one node.

The distributions of static density and pressure in Figure 23(a) and (b) also reflect the
corresponding exact solutions, with rapid changes in these two variables clearly resolved and
normal shock again sharply captured over one internal node. In harmony with the previous
benchmark results, also for this problem has the algorithm correctly generated continuous
distributions for both linear momentum m and enthalpy H across the normal shock, without
any shock bump. Furthermore, the computed H remains again constant, as has to be the case
for a steady adiabatic flow.

Figure 24(a) presents the distributions of total energy E, which visually coincides with the
exact solution in solid line, and upstream bias controller c, with 0.45cB1.5. The controller
remains essentially constant over smooth solution regions, with c=0.4, which corresponds to
a 40% upstream-bias. At the shock, c rapidly rises and reaches a c#0.96 extremum, which
induces a 96% upstream-bias. This increase in c appears less sudden at its inception than that
in Figure 17(a), which reinforces the conjecture that a relatively smooth increase of c at a
normal shock can obviate modest shock overshoots. No overshoots are present in this
solution, and as Figure 24(a) bears out the algorithm succeeds in focusing an increased level
of upstream-bias, hence artificial dissipation, at the shock region only, precisely where required
for an essentially sharp and non-oscillatory solution. Figure 24(b) presents the distribution of
Mach number M, which also reflects the exact solution, and the corresponding distributions of
the acoustics and pressure gradient upstream-bias functions a and d. According to these
distributions, the acoustics upstream-bias is present only in the outlet subsonic regions of the
flow. This type of upstream-bias vanishes in the supersonic region, including the normal shock,
hence it plays no local role in the computation of the shock. Also in this case, therefore, is
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Figure 23. Shocked flow: (a) density and momentum, (b) pressure and enthalpy.

shock resolution entirely due to the convection and pressure gradient upstream biases, which
occur with the same weight at the supersonic side of the shock, where d=1. As M falls across
the shock, so does d, which indicates that the upstream bias in the approximation of the
pressure gradient quickly decreases, leading to an essentially centered approximation of this
gradient towards the outlet. Also for all the distributions computed for this benchmark are the
outlet variations smooth and undistorted; in particular the calculated outlet pressure coincides
with the imposed pressure boundary conditions, which again reflects favorably on the surface
integral pressure enforcement strategy.

9. CONCLUDING REMARKS

The acoustics–convection upstream resolution algorithm rests on the physics and mathematics
of acoustics and convection. It introduces a decomposition of the flux vector Jacobian into

Figure 24. Shocked flow: (a) energy and controller, (b) Mach number, a and d.
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acoustics and convection matrix components, for general equilibrium equations of state,
and generates the upstream-bias at the differential equation level before any discrete ap-
proximation. This formulation generates a characteristics-bias flux that generalizes in the
continuum the traditional upwind scheme numerical fluxes.

A natural finite element discretization of the characteristics-bias flux generates an essen-
tially centered approximation of the Euler flux divergence, in the form of a non-linear
combination of upstream diffusive and downstream anti-diffusive flux differences, with
greater bias on the upstream diffusive flux difference. The algorithm induces this upstream-
bias and associated artificial diffusion mostly locally in regions of solution discontinuities,
whereas it decreases the upstream-bias in regions of solution smoothness. This solution-
driven variable upstream-bias thus minimizes artificial dissipation via an upstream-bias con-
troller that depends on the jumps of solution slopes. The study in this paper has
implemented the algorithm using a linear approximation of fluxes within two-noded cells,
without any MUSCL-type local extrapolation of variables.

The computational results have validated accuracy and essential monotonicity perfor-
mance of the acoustics–convection upstream resolution algorithm for transient and steady
smooth and shocked flows. The algorithm generates essentially non-oscillatory solutions and
automatically preserves a constant enthalpy as well as smoothness of both enthalpy and
mass flux across steady normal shocks. These results have also validated an intrinsically
stable pressure boundary condition procedure at a subsonic outlet. This procedure directly
enforces the outlet pressure within the surface integral that emerges in the momentum
equation weak statement. The computed solutions at nozzle outlets remain smooth and
undistorted and mirror the exact reference solutions, which bears out the reliability of this
pressure boundary condition.

According to the solution-driven numerical values of the upstream-bias controller, the
computed smooth and shocked solutions resulted from a mostly centered discretization.
This finding indicates that a uniformly fully upwind formulation is not strictly necessary
within a characteristics-bias algorithm to generate essentially sharp and non-oscillatory solu-
tions. The algorithm, therefore, succeeds in both reducing artificial dissipation in regions of
smooth flow, for higher accuracy, and focusing an adequate level of upstream-bias, hence
artificial dissipation, at the shock regions, only, precisely where required for stability and
sharp shock capturing.

The computational results agree with the reference solutions, with curvature discontinu-
ities exactly calculated and sharp normal shocks captured over one or two points. The
finite element acoustics–convection upstream resolution algorithm, therefore, delivers solu-
tions that are as sharp and non-oscillatory as those generated by local extrapolation flux
vector and flux difference splitting schemes [13]. This characteristics-bias algorithm, how-
ever, admits a straightforward implicit implementation, features a computational simplicity
that parallels a traditional centered discretization, and rationally decreases superfluous arti-
ficial diffusion. Ongoing work is completing an intrinsically multi-dimensional and infinite
directional acoustics–convection algorithm, to be detailed in a future paper.
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